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Abstract. When a set of patterns is stored in a distributed memory, any given stor-

age location participates in the storage of many patterns. From the perspective of

any one stored pattern, the other patterns act as noise, and such noise limits the

memory's storage capacity. The more similar the retrieval cues for two patterns are,

the more the patterns interfere with each other in memory, and the harder it is to

separate them on retrieval. This paper describes a method of weighting the retrieval

cues to reduce such interference and thus to improve the separability of patterns
that have similar cues.
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Efficient Packing of Patterns in Sparse Distributed Memory by

Selective Weighting of Input Bits*

Pentti KANERVA

1. INTRODUCTION

The mathematical theory of sparse distributed memory [3] was developed assuming

that both the addresses of the storage locations, or hard addresses, and the stored pat-

terns and their retrieval cues are a uniform random sample of all possible n-bit pat-

terns. In the terminology of artificial neural nets, assuming a uniform random

distribution of the hard addresses is equivalent to saying that the input coefficients of

the hidden layer of a fully connected feed-forward net are set randomly to -ls and ls

with equal probability. This choice of coefficients works well when the data fill the

space more or less uniformly. Unfortunately, natural data, such as the bit patterns

derived from spoken words, never do. Instead, they cluster, and much of the space

remains unoccupied. The result is that the parts of the memory where the clusters fall

are overutilized, with stored patterns interfering with each other heavily, while the

rest of the memory is underutilized.

One approach to utilizing the memory more efficiently is to fit the hard addresses to

the data. An extreme case of this is the Hamming network, which has one storage

location for each item of the data set, with the retrieval cue for that item as its

address, and the item is stored in that location only. In distributed memories, the hard

addresses have been chosen in various ways: Joglekar [2] has used patterns from the

data set itself as hard addresses in experiments with NETtalk data, Danforth [1] has

used patterns from speech at large as hard addresses in experiments with spoken-

digit recognition, Rogers [4] has used genetic algorithms to arrive at a set of hard

addresses in experiments with weather data, and Saarinen et al. [5] have used Koho-

hen's self-organization algorithm to arrive at a set of hard addresses in experiments

with raster pictures of digits. The back-propagation of error, to modify the input coeffi-

dents of the hidden layer, accomplishes a similar thing, the difference being that the

back-propagation architectures typically have few hidden units, whereas sparse dis-

tributed memories have many.

2. THE PROBLEM

A complementary approach is discussed in this paper: Assuming that the hard

addresses of a sparse distributed memory are fixed and nonoptimal for the data, how

* To appear in O. Simula (ed.), Proceedings of the International Conference on Artificial Neu-

ral Networks (I CANN- 91, Espoo, Finland) (Amsterdam: Elsevier).
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to address the memory so that patterns associated with similar cues---and stored pat-

terns at large--interfere with each other as little as possible?

The purpose of addressing a sparse distributed memory is to select a small set of

storage locations, referred to as the active locations, in which an item is stored or from

which it is retrieved. The active locations for an item are selected based on the dis-

tance between the item's retrieval cue and the hard addresses: The locations closest to

the cue are activated.

The standard algorithm for addressing uses Hamming distance, which means that

all bits are weighted equally. Consequently, the sets activated by two very similar cues

have a large overlap, and when one of them is used to retrieve its associated pattern,

the pattern associated with the other is mixed with it heavily (in proportion to the size

of the overlap) and makes the output ambiguous.

The standard addressing algorithm is modified by modifying the computation of the

distance between a retrieval cue and a hard address. Instead of weighting all bits

equally, each bit of each cue is weighted individually, and the locations with the small-

est weighted distance to the cue are activated. The problem then is to find a vector of

nonnegative weights for each item in the data set---for each retrieval cue--such that

the set of locations activated by any one cue overlaps as little as possible with the sets

activated by the others. This is the sense in which we try to fit a given set of data as

well as possible into a given set of storage locations.

Expressed in symbols (italic for scalars, bold lowercase for vectors, bold uppercase

for MATRIXES), the problem is the following: We are given a data set of t pairs of

binary vectors (xi,Yi) , i = 1, 2, ..., t, where the x i are t unique n-bit retrieval cues (the

input patterns) and the Yi are their associated r-bit patterns to be stored (the desired

output patterns). We are also given an m × r matrix A of bits, interpreted as m hard

addresses of a sparse distributed memory (m locations with n-bit addresses; rn hidden

units with n inputs each).

The set of active locations for the input x i is determined by computing the Ham-

ruing distances between x i and the rows of A and by selecting the k closest rows, where

k is a parameter of the model (k is of order square root ofm; in the original sparse dis-

tributed memory model, distance below a threshold is used as the activation criterion).

Because there can be several rows at the maximum activation distance, we in fact

select all the rows (and locations) that are no further than the k closest and indicate

their number by k ÷ (the exact value ofk ÷ depends on x i and A [and on w i, see below]).

For convenience, and without loss of generality, we let the two values of a binary

variable (a bit) be -1 and 1 when dealing with addresses and with retrieval cues.

Choosing the k + closest rows according to Hamming distance is then equivalent to

choosing the k + rows with the largest inner product with x i, so that the k ÷ largest com-

¥
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ponents of the vector Ax i (= c i) indicate the active locations for the input x i. Designate

this set by a i (a i is an m-bit activation vector, with k + ones indicating the k + active

locations and zeros elsewhere; air - 1 iffciv >_the kth-largest component ofci).

Weighting the bits of a retrieval cue individually can now be expressed as follows.

The weights for x i are an n-dimensional vector of nonnegative real numbers. Call it

w i, and let W i be the corresponding diagonal matrix. Then the activation vector a i will

indicate the k + largest components ofAWix i instead ofAx i. We can now state the prob-

lem as finding t weight vectors w i such that the corresponding t activation vectors a i

cover the space of all possible activation vectors---that is, vectors ofk + ones and n - k ÷

zeros---as uniformly as possible.

This statement does not specify the problem fully,because we are not saying how to

maximize uniformity. Two possibilitiescome readily to mind, but there can be others.

One is by minimizing the average overlap and the other by minimizing the maximum

overlap over allpairs of activation vectors for the data set,where the overlap between

two activation vectors is the number of ones in their logicalAND (which is the number

of hard locations activated by both of two input patterns). The two methods described

in this paper are heuristic and do not necessarily achieve either of these minimiza-

tions,but they do improve the utilizationof the memory by spreading the total activity

rather uniformly over all the storage locations.

Finally, how are the active locations used? The memory stores r-bit patterns in an

m x r matrix C, which is initially set to zeros. A row of A and the corresponding row of

C constitute a storage location (a hard location), with the row of A as its address and

the row of C as its contents. The pattern Yi is stored by adding it to the contents of

each active location, and a pattern is retrieved by adding the contents of the active

locations and by thresholding the resulting r sums. In symbols, storing (xi,y i) means

adding the matrix aiYi T to C, and retrieving the pattern for x i means thresholding the

vector cWai, where a i is the activation vector for x i and w means transpose (these are

the standard outer-product or Hebbian learning rule and the corresponding output

rule, respectively).

3. PROPERTIES OF THE WEIGHT VECTOR FOR A RETRIEVAL CUE

In the following, we use the terms weighted distance and new distance from x i to xj to

mean the Hamming distance weighted with wi: di(x j) = wiT(xj _ X i) ((a _ b) is the vec-

tor with ls where a and b differ, and 0s elsewhere). To make the weighted distances

comparable with each other and with the Hamming distance, we normalize the

weights so that they add to n, Yvwiv = n (wiv > 0, v = 1, 2, ..., n). Notice that the

weighted distance from x i to xj is usually different from the weighted distance from xj

to xi, and also that the activation vectors are not affected by the normalizing of the
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weights.

How are the weights for xi affected by the other retrieval cues in the data set? If

xj is far from x i (at about n/2 bits or further), their activation vectors based on uniform

weighting are well separated, so that xj does not have a great influence on the weights

for x i. We merely need to make sure that the new distance to xj not be too small. Ifxj

is near x i, their initial activation vectors those based on uniform weighting--have a

large overlap, and the weights need to be chosen to decrease it. Therefore, the new dis-

tance to xj needs to be much larger than the old. The new distance is influenced only

by the weights for the coordinates at which xj differs from x i, and it equals the sum of

the weights for those coordinates. The larger this sum is, the larger is the new dis-

tance, and the smaller is the overlap between the new activation vectors. From these

observations we conclude that xj should increase the weights for x i at the places where

it differs from x i, and that the smaller the number of places at which it differs---that

is, the closer the two initially are--the larger should the increase be.

4. WEIGItTS BASED ON THE RETRIEVAL CUES

If the distribution of the hard addresses is approximately uniform, a good set of

weights can be derived from the retrieval cues alone. The heuristic algorithm that I

have used for calculating the weights is as follows: Each xj contributes to w i an incre-

mental weight vector uj = (xj _ xi)/h(xi, xj), where h(..) is the Hamming distance; and

w i is the (normalized) sum of the incremental vectors over all j ¢ i. Using the recipro-

cal of the Hamming distance in the increments is based on a simple probabilistic argu-

ment, and experiments showed that the reciprocal was better than either its square or

square root.

5. WEIGHTS BASED ON THE OUTPUT SUMS

A more general method of weighting is gotten by looking at the memory's output.

First, we store all t retrieval cues---or, rather, the corresponding vectors of 0s and ls--

=autoassociatively" in the standard manner, meaning that the data are of the form

(xi,Yi), where Yiv = 0 ifxiv = -1, and 1 otherwise, and that the unweighted distance is

used in computing the activation vectors. To determine the weights w i, we then do a

standard memory retrieval with x i as the input, but instead of taking the final thresh-

olded output, we work with the n sums sir (s i = CTai ). What can they tell us?

Since every point of the space of n-bit vectors is equivalent to every other point, we

can simplify the discussion by assuming that x i --(11...1) (the vector of-ls) and Yi is

the zero-vector (XOR all addresses and data with yi, and replace Sly by N- Sly ifyiv = 1,

where N is the total number of patterns stored in the locations activated by xi). The

places where xj differs from x i will them be the ls ofyj, and they occur in the sum vec-
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tor (i.e., yj occurs in it) multiplied by the size of the overlap of the activation vectors a i

and aj. As discussed above, this is what we want, so that the sum vector s i should pro-

vide a good set of weights for xi when x i = -(11... 1); when x i _ -(11... 1), the sum vector

is first transformed as shown above. It also needs to be transformed further.

I performed a number of experiments to determine how to transform the sums into

the input weights and arrived at the function

' = N'(Siv/N')S
W iv

where w'iv is the weight before normalization, N' is the total number of patterns other

than Yi that have been stored in the locations activated by x i (it is the sum of the sizes

of the overlaps of activation vector a i with all the other activation vectors aj; N' =

N - k+), and E > 0 is a parameter (E is the same for all patterns in any given experi-

ment). Thus, the unnormalized weights for x i are between 1 and N'. Pleasing about

this solution to the weights is that it implies the distribution of the hard addresses.

6. EXPERIMENTS

Data. I experimented with three sets of data. In the first set a certain bit is particu-

larly significant in discriminating between patterns of the set, the second set has a

tight cluster of patterns in one part of the space (four highly significant bits), and the

third set is "natural" bit patterns for the capital letters.

The first data set has 32 31-bit patterns (t = 32, n = 31) arranged symmetrically so

that the distances from any one pattern to the others are 1, 2, 3, ..., 31 bits. The 31

bits are divided into five fields of 1, 2, 4, 8, and 16 bits, and each field is set to all 0s or

all ls according to the bits of the binary numbers from 0 to 31. The first five patterns

thus are (0)(00)(0000)(00000000)(0000000000000000), (1)(00)(0000)(8 + 16 0s), (0)(11)-

(0000)(24 0s), (1)(11)(0000)(24 0s), and (0)(00)(1111)(24 0s) (the parens show grouping

into fields). In this data set, each bit is 0 or 1 with equal probability, but the first bit is

more important than any other in discriminating between patterns, and bits 2 and 3

are very important, whereas none of the last 16 bits is particularly important.

The second data set has 28 36-bit patterns, which are organized in fields of length

1, 1, 1, 1, 4, 4, 12, and 12 bits. The first 16 patterns consist of all 16 binary combina-

tions in bits 1-4, with the rest of the patterns being 0s. In patterns 17-22, bits 1-4 act

as a 4-bit field. These patterns, in hex, are 0F0000000, FF0000000, 00F000000,

FOF000000, 0FF000000, and FFF000000. In patterns 23-28, bits 1-12 act as a 12-bit

field. These last six patterns are 000FFF000, FFFFFF000, 000000FFF, FFF000FFF,

000FFFFFF, and FFFFFFFFF. In this data set, the first four bits are highly significant:

They define a tight cluster of 16 patterns about the origin. Bits 5-12 are also signifi-
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cant and, together with bits 1-4, define a loose duster about the origin. The mean dis-

tance between the patterns of this data set is 11.3 bits.

The third data set has 26 35-bit patterns from 7 x 5 raster images of the capital let-

ters, given here in hex (the ist 35 bits each ot): 2114AFC62, F463E8C7C, 74610845C,

F4631807C, FC21E843E, FC21E8420, 74610BC5E, 8C63F8C62, 71084211C, 388421498,

8CA98A4A2, 84210843E, 8EEB58C62, 8E6B39C62, 746318C5C, F463E8420, 74631ACDE,

F463EA4A2, 7460EOC5C, F90842108, 8C6318C5C, 8C62A5108, 8C635AED4, 8C5445462,

8C5442108, and F8444443E. The closest pair of patterns in this set (D and 0) is sepa-

rated by two bits, and five patterns are three bits away and seven are four bits away

from the closest other pattern. The mean distance between patterns is 14.1 bits.

Procedure. The different methods of weighting the retrieval cues were compared

in a series of experiments. An experiment consisted of four passes. In each pass, the

data set was written once into the memory (the contents C were first set to 0s). The

addressing of the memory for the first three passes was as follows: (1) uniform weight-

ing of the retrieval cues; (2) using weights based on the output sums of the first pass

(see Sec. 5); and (3) using weights based on the retrieval cues (see Sec. 4). The fourth

pass was for control: (4) a uniform random data set, of the same size as in the first

three passes, was stored with uniform weighting.

All experiments were made with uniform random sparse distributed memories with

300 locations (the address matrix A was set randomly to -ls and ls with equal proba-

bility; m = 300). In Pass 1, the minimum number of locations activated by a retrieval

cue, k, was 15; in the other passes, k was adjusted so as to give an average k ÷ as close

to that for the first pass as possible, so that the memory would hold nearly equal num-

bers of patterns in the different passes. Since the formula for the weights based on the

output sums contains a parameter, E, Pass 2 required a number of iterations for find-

ing the optimal exponent E (optimal was defined as the value that minimizes the

mean [root mean square] overlap over all pairs of activation vectors for the data set).

Each experiment was run ten times on each of the three data sets.

Results. The results are summarized in Tables 1-3. Entries of the form x(y)z give

the smallest, the mean, and the largest of the ten values obtained. In the headers, t is

the size of the data set, n is the pattern length, mean k + is the average number of loca-

tions activated by a retrieval cue, and E is the exponent used in the weight equation in

Pass 2.

The row labeled Empty cells gives the number of hard locations that were activated

by none of the retrieval cues---they are wasted. Max. pats./cell is the number of times

that the "busiest" location was activated and written into. Very busy locations become

noise and thus also are wasted. Var. pats./cell is the variance of the number of activa-

tions per location (i.e., the number of patterns stored per location). A small variance
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TABLE 1

Experiment with Data Set 1 (t = 32, n = 31, mean k + = 20.1 (21.5) 22.7, E = 1.9 (2.08) 2.4)

Pass 1 2 3 4

Uniform weights Weights from sums Weights from data Random data

Empty cells
Max. pats./cell
Var. pats./cell
Mean % overlap
Max. % overlap

112 (129) 142
12 (14.1) 16

7.3(8.15)9.3
25.0 (26.5) 29.1
1O0 (100) 1O0

74 (86.3) 97
7 (8.0) 9

3.23 (3.84) 4.53
14.7 (15.8) 16.6
50 (55.2)59

71 (84.1) 93
8 (8.3) 10

3.47 (3.87) 4.32 '
14.9 (15.7) 16.4

45 (54.4) 59

18 (23.9) 31
6 (7.7) 10

1.85 (2.08) 2.39
10.1 (10.4) 11.0

36 (45.3) 59

TABLE 2

Experiment with Data Set 2 (t = 28, n = 36, mean k + = 19.1 (21.2) 23.3, E = 0.20 (0.25) 0.32)

Pass Uniform weights Weights from sums Weights from data Random data

Empty cells
Max. pats./cell
Var. pats./cell
Mean % overlap
Max. % overlap

120 (144) 159
19 (21.2) 22

13.0 (15.1) 16.8
36.9 (42.1) 46.3

89 (98.3) 100

o (6.1)11
5 (5.9) 7

1.25 (1.48) 1.77
10.0 (10.9) 11.6

43 (56.6) 74

o (1.5)5
5 (6.7) 9

1.16 (1.54) 1.81
9.64 (11.2) 12.1

42 (53.4) 65

31 (38.6) 49
6 (6.7) 8

1.65 (2.02) 2.48
9.73 (10.6) 11.8

36 (44.5) 65

TABLE 3

Experiment with Data Set 3 (t = 26, n = 35, mean k + = 20.9 (21.8) 23.3, E = 0.26 (0.37) 0.50)

Pass Uniform weights Weights from sums Weights from data Random data

Empty cells
Max. pats./cell
Var. pats.Ice,
Mean % overlap
Max. % overlap

89 (103) 111
10 (13.5) 17

4.29 (5.24) 6.08
18.6 (20.7) 22.8

73 (80.6) 93

27 (35.7) 43
5 (5.6) 7

1.31 (1.47) 1.60
9.4 (9.94) 10.4
32 (37.9) 48

33 (41.4) 52
5 (5.8) 7

1.38 (1.62) 1.86
10.5 (11,0) 11.7

38 (47.5) 67

29 (40.9) 46
5 (6.7) 11

1.54 (1.78) 2.32
9.69 (10.4) 11.2

32 (42.1) 63

means uniform utilization of memory (writing into the locations at random results in a

variance equal to the mean). Mean % overlap is the average (root mean square) over-

lap over all pairs of activation vectors for the data set, and Max. % overlap is the larg-

est of them. Small percentages mean good discrimination by the memory.

I did these same experiments without clearing the memory between the first and

the second pass--before storing the data with the weighted cues. After the data were

thus stored twice, unweighted retrieval produced nearly the same set of weights for

the weighted retrieval as it did with the data stored only unweighted.
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7. CONCLUSIONS

Storing a set of input patterns autoassociatively in a sparse distributed memory pro-

vides a means of finding a set of input weights for these same patterns: the sums

obtained by reading from the memory can be converted into the weights. Such weight-

ing of the input patterns improves the utilization of the memory if the set of patterns

does not match well the set of memory locations. No assumptions are made concerning

the distribution of the memory locations, so that this method can be used in addition

to any other method, such as redistributing the memory locations, to improve memory

utilization. The memory can be used at once for both the unweighted and the weighted

storing of the patterns, which points a way to a two-step method of storing a set of pat-

terns in and retrieving it from the memory. The weighting is then like an attentional

mechanism: the weights from the first pass indicate where the discriminating features

of the pattern are in relation to this particular set of data and this particular set of

memory locations.
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